
NASA-CR-200925

NASA/WVU Software IV & V Facility

Software Research Laboratory
Technical Report Series

NASA-IVV-95-010

WVU-SRL-95-010

WVU-SCS-TR-95-30

CERC-TR-RN-95-013

/
/

Reliable Multicast Protocol Specifications Flow. Control and
NACK Policy

by John R. Callahan, Todd L. Montgomery, and Brian Whetten

_?:z__._',_ . _.

National Aeronautics and Space Administration

West Virginia University



Reliable Multicast Protocol Specifications

Flow Control and NACK Policy
Todd Montgomery

Brian Whetten

John R. Callahan

5 October 1995

The Reliable Multicast Protocol Specification

Flow Control and NACK Policy

RMP Library Version: 1.3b (1.3 Beta)

This appendix presents the flow and congestion control schemes

recommended for RMP and a NACK policy based on the whiteboard tool.

Flow and Congestion Control

Because RMP uses a primarily NACK based error detection scheme, there

is no direct feedback path through which receivers can signal losses

through low buffer spac_ or congestion. Reliable multicast protocols

also suffer from the fact that throughput for a multicast group must

be divided among the members of the group. This division is usually

very dynamic in nature and therefore does not lend itself well to a

priori determination. These facts have lead the flow and congestion

control schemes of RMP to be made completely orthoganol to the

protocol specification. This allows several differing schemes to be

used in different environments to produce the best results. As a

default, a modified sliding window scheme based on previous

algorithms are suggested and described below.

Flow control and congestion control are treated as exactly the same

problem in this modified sliding window scheme. A sliding window flow

control scheme is an adaptive mechanism that attempts to maintain a

constant window of packets in transit. Packets in transit are packets

that have been sent, but have not been acknowledged yet. Ideally this

window corresponds to the current level of available resources. Other

predictive flow control schemes have been proposed and are currently

under investigation. These schemes are more applicable to high

latency long fat networks, such as ATM. These networks require that

hundreds of packets be An transit at once, and the consequences of

trying to adaptively size the transmission window when congestion

occurs is much too high.

Some very good work has been done in providing efficient congestion

control for TCP by Van Jacobson. It is this work that RMP has

partially adopted and expanded upon for its flow and congestion

control mechanisms. The main four adopted points of the TCP work are:

o Round-Trip-Time Variance Estimation

Whetten, Montgomery, Callahan RMP 1.3b [Page i]



Flow Control & NACKs Reliable Multicast Protocol 5 October 1995

o Slow Start
o Dynamic Window Sizing on Congestion

o Exponential Retransmit Timer Backoff

Round-trip-time (RTT) of a message is the time it requires for a

packet to be sent and a corresponding acknowledgment to arrive at the

sender. Round-trip-time variance estimations provide a means of

determining how large timeout periods should be on retransmissions

based on the average measured length of the round-trip-time and the

deviation in the time. It has been observed that when network paths

become congested, the variance on packet latency becomes very high

compared to it average. "If the network is running at 75%

capacity...one would expect the round-trip-time to vary by a factor

of 16" It is hoped that by continually estimating the variance and

adjusting the average, that an accurate timeout period can be

calculated that will virtually eliminate all spurious

retransmissions. The elimination of spurious retransmissions allows

more bandwidth and processing time to be dedicated to actual useful

work, as well as reducing the probability of a false failure

detection. The calculation of the timeout period can be effectively

done using the following formulas:

Err = M - A

A = A + g A(Err)

D = D + g_D(LErrl - D)
rto = A + 4D

The g_A and g_D terms are gain terms. M is the round-trip-time
measurement. A is the round-trip-time average. D is the round-trip-

time mean deviation. And rto is the next timeout period length.

Experimentation has shown that 0.0625 and 0.125 are good values for

g_A and g_D, respectively.

The slow start algorithm is used to increase the window size from its

initial size of one packet to the maximum window size that does not

cause congestion. The window size is measured in Minimum Transfer

Units, or MTUs. 1 MTU represents a set number of bytes of data in

transit. The value of 1 MTU is configurable based on network

properties. The slow start algorithm starts by initializing the
allowable maximum window size to be 1 MTU. Each time an ACK is

received for a packet the window size is incremented 1 MTU. It may

not be obvious, but this increases the window size exponentially. The

window size will increase from 1 to W on a latency L network path in

Lw start actually increases the window size fairly rapidly. Once a

sign of congestion occurs, then the window must be reduced. After

this first reduction, slow start is not used. But a congestion

avoidance scheme is used. This scheme increases the window in a more

linear fashion to hopefully avoid congestion. This is done by

Whetten, Montgomery, Callahan RMP 1.3b [Page 2]



Flow Control & NACKs Reliable Multicast Protocol 5 October 1995

incrementing the window size by I/(Window Size) each time an ACK
arrives for a packet. A window size of Wwill therefore only generate

at most W ACKs, and an increase of I/W will increase the window by 1

in one round-trip-time. This increases the window size linearly. In

this way, resource limits are probed, but not overrun too quickly.

Under the observations that most lost packets are the result of

congestion and not errors and that retransmissions must signal lost

packets, then any retransmissions, or expired timers for

retransmissions, signal congestion. Congestion must decrease the

maximum wlndow size. RMP decreases its window size by 50 each time

congestion is encountered. After this decrease the window increases

using the linear increase presented above.

Each time a timer expires and a retransmission is needed, the

exponential retransmit timer backoff scheme doubles the timer. Once

an ACK is received for the packet, however, the value is set to the

rto value as calculated. This scheme is applied to all packets that

require positive acknowledgments. The timer value must be clamped at

a certain maximum value, however, currently 2 seconds. This scheme

attempts to ensure that false alarms occur very rarely and that

alarms signalling retransmission themselves should not cause even

more congestion.

Flow control is addressed by allowing NACKs to also signal dropped

packets. Sites that are overrun by senders will drop one or more

packets, and will have to send NACKs for those packets. A default

NACK control policy is to multicast the NACK to the entire group.

Thus the sender will see that its packet was dropped and can reduce

its window size exactly the same way it would in congestion control,

by 50%. Care must be taken not to perform this decrease multiple

times for the same packet, however.

NACK Policy

B/MP uses a modified SRM Request/Repair policy (as is used in the wb

tool). The goals of any R/KP NACK policy should be: (i) reduce the

number of NACKs sent to the group to the bare minimum required for

any random group topology, (2) the delay between request and repair

should be as low as possible, and (3) reduce the number of repairs

(responses) to the bare minimum required to repair the inconsistent

group members across a random group topology. The SRM Request/Repair

policy strives towards these goals.

The basic mechanisms are these: when detecting loss, schedule a NACK

Requet timer for a random time in the future. When the timer expires,

send a NACK for that timestamp. When receiving the repair, stop

retransmission of the NACK. While waiting for the NACK Request Timer

Whetten, Montgomery, Callahan RMP 1.3b [Page 3]



Flow Control & NACKs Reliable Multicast Protocol 5 October 1995

to expire, any received NACK for the same timestamp should result in

the NACK Request timer being exponentially backed off. When receiving

a NACK for a timestamp that the site has, then a NACK Repair timer is

scheduled for a random time in the future. When the timer expires,

send a repair for the timestamp in the NACK. While waiting for the

timer to expire, if a dulicate comes in for that timestamp, then

cancel the NACK Repair timer. After receiving a duplicate for a

timestamp, or receiving a repair for a timestamp, then ignore any

NACKs for that timestamp for a slight period of time. The ranges over

which the random times are chosen are incredibly important. For a

detailed discussion and analysis, see the SRM paper. Random timer

ranges can be based on the round-trip-time of Data packets as kept by

flow control.

To implement the SRM policy in RMP requires that the NACK policy be

integrated into the OrderingQ abstraction of RMP. Each slot in the

OrderingQ must have an associated disposition of any pending NACK

request or repair for that slot. The five NACK dispositions are: (0)

slot has no pending NACK Request or NACK Repair timers, (i) slot has

pending NACK Request timer, (2) slot has pending NACK Repair timer,

(3) slot has expired NACK Kequest timer and is now sending a NACK for

timestamp of slot, and (4) slot has expired NACK Repair timer and is

ignoring all NACKs for slot.

RMP is an event driven system, so the NACK policy also must be event

driven. In this vein, the NACK policy is defined in terms of how-the

NACK disposition of a slot changes in response to different events.

Event: Detect missing slot in OrderingQ

Action: Set slot state to Packet Requested. Set slot NACK disposition

to i. Schedule NACK Request timer.

Event: Receive NACK

Action: If slot NACK disposition is 0, then set slot NACK disposition

to 2, schedule NACK Repair timer. If slot NACK disposition is I, then

exponentially back off NACK Request timer for slot. If slot NACK

disposition is 2 or 4, then do nothing.

Event: Receive duplicate for slot

Action: If slot NACK disposition is 2, then remove pending NACK

Repair timer for slot, set slot NACK disposition to 4. Schedule

Ignore NACK timer for slot. If slot NACK disposition is not 2, then

do nothing.

Event: Receive repair for requested slot

Whetten, Montgomery, Callahan Pe4P 1.3b [Page 4]



Flow Control & NACKs Reliable Multicast Protocol 5 October 1995

Action: If slot NACKdisposition is i, then removepending NACK
Request timer, set slot NACKdisposition to 4, schedule Ignore NACE
timer. If slot NACKdisposition is 3, stop retransmit cycle on NACK,
set slot NACKdisposition to 4, schedule Ignore NACKtimer. In both
cases, set slot state to Packet Received.

Event: Expired NACKRequest timer

Action: start retransmit cycle for NACK,set slot NACKdisposition to
3.

Event: Expired NACKRepair timer

Action: retransmit packet for slot, set slot NACKdisposition to 4,
schedule Ignore NACKtimer.

Event: Expired Ignore NACKtimer

Action: set slot NACKdisposition to 0.

Event: DeQueuing slot from OrderingQ

Action:

slot NACK disposition = 0: no action

slot NACK disposition = i: error (slot not repaired)

slot NACK disposition = 2: remove NACK Repair timer

slot NACK disposition = 3: error (slot not repaired)

slot NACK disposition = 4: remove Ignore NACK timer

Ignore NACK timers and pending NACK Repair timers can be ignored when

the OrderingQ slot is deQueued because the site is certain that the

requesting site has already been repaired if the slot is to be

deQueued. This form of message stability notification allows some of

the cases where a NACK was prematurely sent to be caught and treated

accordingly.

Some future examinations include exmaining what adaptive constant

schemes provide RMP with good delay on NACK Request and Repair

timers. Another possibility is adjusting timer values based on what

kind of packet a slot "probably" contains. A common case for this

NACK policy is that a missing ACK is actually the only missing packet

and that the corresponding Data or Non-Menaber Data (NMD) packets for

it are in the DataQ. In this case, the OrderingQ is actually missing

all the ACK and Data/NMD slots, but only requires the ACK to fill all

the slots. By taking a guess at the slots probable contents and

adjusting the timer constants accordingly, an ACK could be requested

before the NACK Request timer(s) for the Data/NMD packets expires,

thus causing them to be removed and not serviced.

Whetten, Montgomery, Callahan RMP 1.3b [Page 5]



Flow Control & NACKs Reliable Multicast Protocol 5 October 1995

Authors" Addresses:

Todd Montgomery
West Virginia University
Morgantown, WV
Email: tmont@cerc.wvu.edu

Brian Whetten
University of California Berkeley
Berkeley, CA

Email: whetten@tenet.cs.berkeley.edu

John R. Callahan

West Virginia University

Morgantown, WV
Email: callahan@cerc.wvu.edu

Whetten, Montgomery, Callahan RMP 1.3b [Page 6]




